The Convergence of AI and Blockchain: What’s the deal?

This article wants to give a flavor of the potentialities realized at the intersection of AI and Blockchain and discuss standard definitions, challenges, and benefits of this alliance, as well as about some interesting player in this space.
By Francesco Corea, Decision Scientist and Data Strategist.
c
comments
Header image

Image Credit: Zapp2Photo/Shutterstock

It is undeniable that AI and blockchain are two of the major technologies that are catalyzing the pace of innovation and introducing radical shifts in every industry. Each technology has its own degree of technical complexity as well as business implications but the joint use of the two may be able to redesign the entire technological (and human) paradigm from scratch.

This article wants to give a flavor of the potentialities realized at the intersection of AI and Blockchain and discuss standard definitions, challenges, and benefits of this alliance, as well as about some interesting player in this space.

I. Setting the stage

 


Image Credit: 4zevar/Shutterstock

I have been talking and writing about AI since a while now, so I will not waste any time defining what it is and what is not (if you want to know more about it, you can check my explanation or a brief history of AI).
However, I never touched upon blockchain and cryptocurrencies so far, so I will dedicate this first block to describe what it is and how it works.

A blockchain is a secure distributed immutable database shared by all parties in a distributed network where transaction data can be recorded (either on-chain for basic information or off-chain in case of extra attachments) and easily audited.

A blockchain is a secure distributed immutable database shared by all parties in a distributed network

Put simply (with Bank of England’s words), the blockchain is “a technology that allows people who don’t know each other to trust a shared record of events”.

The data are stored in rigid structures called blocks, which are connected to each other in a chain through a hash (each block also includes a timestampand a link to the previous block via its hash). The blocks have a header, which includes metadata, and a content, which includes the real transaction data. Since every block is connected to the previous one, as the number of participants and blocks grow, it is extremely hard to modify any information without having the network consensus.

The network can validate the transaction through different mechanisms, but mainly through either a “proof-of-work” or a “proof-of-stake”. A proof-of-work(Nakamoto, 2008) asks the participants (called “miners”) to solve complex mathematical problems in order to add a block, which in turn require a ton of energy and hardware capacity to be decoded. A proof-of-stake (Vasin, 2014) instead tries to solve this energy efficiency issue attributing (roughly) more mining power to participants who own more coins (there are many variations of it and some skepticism around its famous “nothing at stake” problem — see Buterin’s blog post to know more on this).

Additional mechanisms are the Byzantine-fault-tolerant algorithm (Castro and Liskov, 2002), the Quorum slicing (Mazieres, 2016), as well as variations of the Proof-of-stake (Mingxiao et al., 2017), but we will not get into those now.

The final characteristic that needs to be explained is the category of blockchain based on the different network access permission, i.e., whether it is free for anyone to view it (permissionless vs permissioned) or to participate in the consensus formation (public vs private). In the former case, anyone can access and read or write data from the ledger, while in the latter one predetermined participants have the power to join the network (and of course only in the public permissionless case a reward structure for miners has been designed).

It should be clear by now the intrinsic power of this technology, which is not simply a disruptive innovation but rather a foundational technology that aims to “change the scope of intermediation” (Catalini and Gans, 2017). Distributed ledger technologies will indeed reduce both the costs of verification and networking, influencing then the market structure and eventually allowing the creation of new marketplaces. Iansiti and Lakhani (2017) also drew a brilliant parallel between blockchain and TCP/IP in a recent work (which I highly recommend), showing how blockchain is slowly going through the four phases that identify previous foundational technologies such as the TCP/IP, i.e., single-use, localized use, substitution, and transformation. As they explained, the “novelty” of such a technology makes it harder for people to understand the solution domain, while its “complexity” requires a larger institutional change to foster an easy adoption.

However, it is also true that the blockchain is shifting the traditional business models distributing value in an opposite way with respect to previous stacks: if it made more sense to invest in applications rather than protocol technologies fifteen years ago, in a blockchain world the value is concentrated in the shared protocol layer and only marginally at the application level (see the “Fat Protocol” theory by Joel Monegro).

It’s a stack with “fat” protocols and “thin” applications (Joel Monegro).

To conclude this introductory section, I will just mention on the fly the possibility for the blockchain to not simply allow for transactions but also the possibility to create (smartcontracts that are triggered by specific events and threshold and that are traceable and auditable without effort.

Bonus Paragraph: Initial Coin Offerings (ICOs)

A big hype is nowadays surrounding this new phenomenon of the Initial Coin Offerings (ICOs). Even if many people are pouring money into that because of its resemblance to the most common (and valuable) Initial Public Offerings (IPOs), an ICO is nothing more than a token sale, where a token is the smallest functional unit of a specific network (or application).

ICOs experts (if any) will forgive my approximate definition, but an ICO is a hybrid concept that has elements of a shares allocation, a pre-sales/crowdfunding campaign, and a currency with a limited power and application’s domain.

It is definitely an interesting innovation that introduces new unregulated ways to raise capitals, but it also poses several issues to an unprepared community. I am happy to receive feedback on this, but I would distill the key points of an ICO evaluation in what follows:

  • a token has an additional utility with respect to the exchange of value and companies selling token with the only goal of raising capital are sending a bad signal to the market. Tokens are needed to create a users’ base and to incentivize stakeholders to participate in the ecosystem at the earliest stage. A good white paper is not enough;
  • Be wary of token sales that are uncapped;
  • Be wary of token sales that have no time limit;
  • Be wary of token sales that do not clearly state the (present and future) number as well as the value of the token (it could sound absurd, but you may be surprised of how non-transparent an ICO can look like).

II. How AI can change Blockchain

 


Image Credit: Phonlamai Photo/Shutterstock

Although extremely powerful, a blockchain has its own limitations as well. Some of them are technology-related while others come from the old-minded culture inherited from the financial services sector, but all of them can be affected by AI in a way or another:

  • Energy consumptionmining is an incredibly hard task that requires a ton of energy (and then money) to be completed (O’Dwyer and David Malone, 2014). AI has already proven to be very efficient in optimizing energy consumption, so I believe similar results can be achieved for the blockchain as well. This would probably also result in lower investments in mining hardware;
  • Scalability: the blockchain is growing at a steady pace of 1MB every 10 minutes and it already adds up to 85GB. Satoshi (2008) first mentioned “blockchain pruning” (i.e., deleting unnecessary data about fully spent transactions in order to not hold the entire blockchain on a single laptop) as a possible solution but AI can introduce new decentralized learning systems such as federated learning, for example, or new data sharding techniques to make the system more efficient;
  • Security: even if the blockchain is almost impossible to hack, its further layers and applications are not so secure (e.g., the DAO, Mt Gox, Bitfinex, etc.). The incredible progress made by machine learning in the last two years makes AI a fantastic ally for the blockchain to guarantee a secure applications deployment, especially given the fixed structure of the system;
  • Privacy: the privacy issue of owning personal data raises regulatory and strategic concerns for competitive advantages (Unicredit, 2016). Homomorphic encryption (performing operations directly on encrypted data), the Enigma project (Zyskind et al., 2015) or the Zerocash project(Sasson et al., 2014), are definitely potential solutions, but I see this problem as closely connected to the previous two, i.e., scalability and security, and I think they will go pari passu;
  • Efficiency: Deloitte (2016) estimated the total running costs associated with validating and sharing transactions on the blockchain to be as much as $600 million a year. An intelligent system might be eventually able to compute on the fly the likelihood for specific nodes to be the first performing a certain task, giving the possibility to other miners to shut down their efforts for that specific transaction and cut down the total costs. Furthermore, even if some structural constraints are present, a better efficiency and a lower energy consumption may reduce the network latency allowing then faster transactions;
  • Hardware: miners (and not necessarily companies but also individuals) poured an incredible amount of money into specialized hardware components. Since energy consumption has always been a key issue, many solutions have been proposed and much more will be introduced in the future. As soon as the system becomes more efficient, some piece of hardware might be converted (sometimes partially) for neural nets use (the mining colossus Bitmain is doing exactly this);
  • Lack of talent: this is leap of faith, but in the same way we are trying to automate data science itself (unsuccessfully, to my current knowledge), I don’t see why we couldn’t create virtual agents that can create new ledgers themselves (and even interact on it and maintain it);
  • Data gates: in a future where all our data will be available on a blockchain and companies will be able to directly buy them from us, we will need help to grant access, track data usage, and generally make sense of what happens to our personal information at a computer speed. This is a job for (intelligent) machines.